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Crystal-structure analysis via the Patterson function may be considered as consisting of two distinct 
steps. In the first step, the weighted periodic vector set is determined by establishing the location of each 
peak in the Patterson function. In the second step, the weighted periodic vector set is analysed to 
determine the crystal structure. The second step apparently offers little difficulty, since existing proce- 
dures for the analysis of periodic vector sets appear to be capable of dealing with complex structures, 
provided of course that the vector set is accurately determined. Unfortunately, a general and powerful 
method for the location of peaks in the Patterson function has not yet been developed and therefore it 
is the first step in the solution process which now prevents the formulation of a general method of struc- 
ture analysis via the Patterson function. Such a method would be extremely useful, since the Patterson 
function is not restricted to centrosymmetric structures. In the present paper a way of representing the 
Patterson function as a linear generalized polynomial in a system of independent interatomic functions 
is developed. The coefficients of this polynomial determine the weighted periodic vector set. This ap- 
proach, therefore, reduces the problem of extracting the periodic vector set from the Patterson function 
to a relatively simple problem in linear approximation, namely the determination of the coefficients of 
a generalized polynomial. 

Introduction 

During the past fifty years many methods for the solu- 
tion of crystal structures have been proposed. These 
existing methods are all limited to crystals with special 
characteristics, and a general method, capable of deal- 
ing with virtually any sort of crystal in a routine man- 
ner, remains to be discovered. 

In order to formulate a general and practical method 
of structure analysis, one would naturally think of 
working in terms of the Patterson function, since this 
function is not restricted to centrosymmetric structures. 
It is now well known that a weighted periodic vector 
set (Buerger, 1959) can be associated with the Patterson 
function of an arbitrary crystal. In the following dis- 
cussion, weighted vector sets will often be referred to 
simply as periodic vector sets, since unweighted sets 
will never be considered. For a crystal containing N 
atoms per unit cell, the periodic vector set consists of 
N periodic images of the crystal structure. The essence 
of the phase problem lies in the separation of the var- 
ious points of the periodic vector set into these images. 

This separation can be accomplished for periodic vector 
sets by the image-seeking method of Buerger (1950), 
even though this method was originally devised in 
terms of non-periodic vector sets. Tokonami & Hosoya 
(1965) have developed a different procedure for un- 
ravelling periodic vector sets. Their method depends 
explicitly on certain periodic characteristics of the peri- 
odic vector sets. It also offers certain computational 
advantages over the image-seeking methods. 

These considerations indicate that crystal-structure 
analysis via the Patterson function may be viewed as 
consisting of two distinct steps. In the first step, the 
peaks in the Patterson function are located; this deter- 
mines the periodic vector set. In the second step, the 
periodic vector set is solved to yield the crystal struc- 
ture. Unfortunately we do not have, at the present time, 
a general and practical method for the location of peaks 
in the Patterson function. Consequently, it is the first 
step in the solution process, that of locating the peaks 
in the Patterson function, which now prevents the de- 
velopment of a general method of structure analysis in 
terms of the Patterson function. It would seem that if 
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the periodic vector set could be determined from the 
Patterson function in some way, the crystal structure 
could be obtained by means of existing vector-set meth- 
ods. Of course, the image-seeking method and the To- 
konami-Hosoya procedure have not been widely used 
in practice, and it may therefore"turn out that their 
power is restricted in some ways which are not now 
recognized. At present, however, it appears that these 
procedures could be successfully applied to extremely 
complex crystals, provided the vector set could be ac- 
curately determined. 

The problem of recovering the periodic vector set 
from the Patterson function has, in the past, been ap- 
proached mainly via Patterson sharpening procedures 
(Patterson, 1934; Wunderlich, 1965). The power of 
these methods depends to a large extent on the resolu- 
tion of the Patterson function, and therefore they do 
not appear to the capable of yielding the vector set ex- 
cept for comparatively simple structures. Other meth- 
ods, which in effect locate individual peaks in the Pat- 
terson function, have also been proposed. These meth- 
ods, like the symmetry minimum function (Simpson, 
Dobrott & Lipscomb, 1965), can only be applied to 
crystals of sufficiently high symmetry, and are therefore 
non-general. 

All of these existing methods depend critically on the 
possibility of recognizing individual resolved peaks in 
the Patterson function. What is really needed is a meth- 
od which can 'see through' the overlapping peaks re- 
gardless of any lack of resolution. This paper presents 
an attempt to formulate a practical method of that 
kind. This new method is based on the theory of ap- 
proximation in generalized polynomials (Cheney, 
1966). It provides an approach which can be applied 
to the problem of crystal-structure analysis in several 
different ways, for example as a phase test and as a way 
of solving the structure-factor equations. However, this 
paper will deal only with the most straightforward of 
these methods, which involves the Patterson function. 
A very brief account of one variant of these methods 
has already been published (Goldak, 1969). In the pres- 
ent paper, the formulation of a generalized polynomial 
representing the Patterson function is considered in 
detail. Following papers will present methods for the 
practical computation of these polynomials. 

The Patterson function as a sum of interatomic functions 

The Patterson function is defined as the convolution 
of the electron density function. A one-dimensional 
Patterson function A(x), projected onto the a crystal 
axis, is then represented by the Fourier series 

+ o o  

A(x) ~_ C ~, IFnl 2 exp [2rcihx] (1) 
/ , / ~  - -  o o  

where F~ is the structure factor of Miller index h. The 
constant C =  bc/v where b, c, and v are, as usual, unit- 
cell parameters. It is important to note that the sum of 
the series on the right-hand side does not necessarily 

equal A(x), but only corresponds to A(x). How well the 
series approximates A(x) depends on its convergence 
properties. For the following work we will define a 
partial Patterson function of order M as the Mth  par- 
tial sum of the series (1) so that 

+ M  

PM(x)=C ~. Ifnl 2 exp [2rcihx]. (2) 
h = - - M  

All the following work will be done in terms of Piu(x) 
rather than A(x). 

The one-dimensional partial Patterson function 
PM(X) can be written as 

+ M  I N  N ] 

------ ---- m = l  h 

x exp [2rcihx]. (3) 

In (3) N is the number of atoms per unit cell, and h is 
the Miller index; xn is the fractional coordinate of the 
n th atom and fn is its scattering factor. Following Ki- 
taigorodskii (1961), we then refer to 

+ / o r  

P"~(x)=C ~ {fnfm exp [2rcih(x,,--xm)l}h 
h = - - M  

x exp [2rcihx]. (4) 

as an interatomic function corresponding to the n th 
and m th atoms. We then call (xn-Xm) the interatomic 
function parameter. In order to obtain a simpler and 
more powerful notation for the interatomic functions, 
an arbitrary correspondence is established which 
uniquely defines an interatomic function kind index q 
and an interatomic function order index p in terms of 
the atom indices m and n. For example, in a given situa- 
tion, q-- 1 may denote the several carbon-carbon inter- 
atomic functions associated with the crystal. Then the 
indices q =  1 and p =  3 would denote the third carbon- 
carbon interatomic function. Under this correspond- 
ence, the p th interatomic function of the qth kind may 
be written as 

+ M  

IMa(x-x~) =C ~ {f,,fm exp [2rcih(x,,--Xm)]}h 
h = - - M  

x exp [2rcihx] (5) 

where ~ = x , - X m  is the interatomic function param- 
eter. Let K denote the number of kinds of interatomic 
functions associated with crystal, and let Nj represent 
the number of interatomic functions of the j t h  kind. 
Then the partial Patterson function can be written 
exactly as 

g 2% 
2; (6) 

q - - l p - - 1  

The interatomic function IMq(x-xg) is periodic with a 
'bell-shaped' maximum at x=x~,; the function is sym- 
metric about the point x = xv a. 

We may later refer to (4) as a full-cell representation 
of the partial Patterson function, and to the interatomic 
functions of the kind defined by (5) as full-cell inter- 
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atomic functions. However, the partial Patterson func- 
tion is always centrosymmetric and we can also obtain 
a representation in 0 < x < 3. We define a half-cell inter- 
atomic function as 

I~ (x -  x~,)= Imp(x- x~,) + Iu~(x + xg) (7) 
1 + g(O, xg) + g(½, x~,) 

where g(i,j) is, as usual, the Kronecker delta. The half- 
cell interatomic functions are not symmetric about 
x = xg unless ~ = 0 or ~ = ½. If Nj denotes the number 
of half-cell interatomic functions of the j t h  kind, the 
Patterson function can be written as 

/c 1% 
eM(x)= E E • (8) 

q = l  p = l  

Equations (6) and (8) of course hold true only if the 
scattering factors used in the computation of the 
IM~(x- ~) are the same as those which occur in PM(X). 
The most convenient way of ensuring this compatibility 
is to place the observed structure amplitudes initially 
onto an absolute scale, and to determine an average 
temperature factor, so that an appropriate scattering- 
factor adjustment can be made. A fairly accurate way 
of doing this via the Patterson function will be de- 
scribed in a following paper. Depending on the scatter- 
ing factors used, equations (6) and (8) can be applied 
to moving-atom crystals, to stationary-atom crystals, 
or to point-atom crystals. 

For later matrix operations, it will be desirable to 
have the interatomic functions as 'sharp' as possible. 
Therefore it will be necessary to correct the observed 
structure factors so that they correspond to a station- 
ary-atom crystal, or to sharpen them so that they corre- 
spond (approximately) to a point-atom crystal. For the 
stationary-atom case, the functions IMa(X--X~p ) in (6) 
and (7) are given by the Fourier series (5). However, 
the representations (6) and (8) for a sharpened Patter- 
son can be formulated in several different ways. 

To sharpen the Patterson function according to Pat- 
terson's method (Patterson, 1935), it is assumed that 
the scattering factors can be represented with sufficient 
accuracy by an expression of the form 

f j=zjf .  (9) 

In (9), J~ is a stationary-atom scattering factor, Zj is an 
atomic number, and f is an average unit scattering 
factor. The observed structure amplitudes are divided 
by f so that the sharpened Patterson function is 

eM(x)=C 
=,.=, ? / 

x exp [2zcih(x n- Xm)]~ exp [2rcihx]. 
J 

(10) 

Therefore, just as in (5), the expression 

IMa(X--Xg)= Ch=~_ M x 7- 

x exp [2rcih(x,,-Xm)]} exp [2rcihx]. (11) 

gives the interatomic functions which exactly corre- 
spond to the sharpened Patterson function. It is im- 
portant to note that (6) is exact (aside from round-off 
errors) and when used as a representation of a sharp- 
ened Patterson function, is not affected by inaccuracies 
in the sharpening assumption (9). 

However, when dealing with crystals for which (9) 
is a good approximation, the sharpened Patterson 
function will be almost identical with the point-atom 
Patterson function. In this case, we can obtain a suf- 
ficiently accurate representation of the sharpened Pat- 
terson function as a sum of point-atom interatomic 
functions. If  this is done, an extremely advantageous 
representation of the interatomic function can be ob- 
tained. 

To obtain this representation we note that the partial 
Patterson function corresponding to a point-atom crys- 
tal can be written as 

+M{ N eM( )=c zjz  
h f - - M  1 = k = l  

x exp [2z~ih(xj-xk)]} h exp [2rcihx]. (12) 

In this expression Zj is the atomic number of the j t h  
atom, and M is the highest-order Miller index asso- 
ciated with the available structure amplitudes. Then 
setting xje=xj-x~ (12) can be rewritten as 

PM(X)= 

czjz  1+ 
j = l  k = l  h = - - M  

h # 0  

o r  

exp [2z~ih(x+xje)])} (13) 

PM(X)= ~ CZyZk 1 + ~ (exp [2rcih(x+ xye)] 
1=1 k = l  h = l  

+exp [-2rcih(x+xyx)])]}. (14) 

The last expression is the same as 

PMtx)= ~ ~ 2CZ~Ze 3+ ~ cos 2rch(x+ xjk • 
1=1 k = l  h ~ l  

(15) 
The finite sum in the square brackets has the property 

M I  
3 +  ~ cos 2rch(x+xj~)= sin [2zc(M+½) (x+xjk)] 

h=x 2 sin [zffx + xjk)] " 
(16) 

This function, which according to usual terminology 
would be denoted by DM(x+x~), is of fundamental 
importance in the study of the convergence of Fourier 
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series, and is known as the Dirichlet kernel of order M. 
Thus (15) is 

N N sin [2zc(M+½) ( x - x ~ ) ]  PM(X)= Z Z 2CZjZk 
1=1 k=l 2 sin [re(x-xei)] ..... 

(17) 

Under the previously described index correspondence, 
a p th  modified Dirichlet kernel of order M and of the 
qth kind, can be written as 

sin [2re(M+½) (x-xkl)] . (18) 
OMa(X -- xaP) = CZlZk sin [re(x- Xkj)] 

Then (14) can be written in the form 

K Nq 

PM( x)= Z Z DM~(X--X~,) (19) 
q = I p = l  

which is analogous to (6). DMq(X--~) may be termed 
a full-cell Dirichlet kernel. A half-cell Dirichlet kernel 
may be defined by 

DHM~(X__ Xg)= Du~(X- Xg) + Duq(X + xg) 
1 + O(0,x~) + 6(½,x~) (20) 

The Dirichlet kernels in (19) arose because (12) repre- 
sents a direct partial summation of (1). Although direct 
summation of Fourier series is very commonly em- 
ployed, in certain cases other summation methods may 
possess better convergence characteristics (Lanczos, 
1966). For the present work, Cesaro summation (Tol- 
stoy, 1962) and Lanczos sigma-summation (Lanczos, 
1966) can be applied with considerable advantage. In 
Cesaro summation, the Mth partial Cesaro sum is the 
arithmetic mean of the first M direct partial sums. 
Using (17) to obtain the direct partial sums, a Cesaro 
summed partial Patterson function of the Mth order 
can therefore be defined as 

CM(X)= I/M{Po(x)+ PI(x)+ ...  PM-I(x)} . (21) 

From (17) and (21), it can be shown that 

N N 

C M ( X ) - ~ C  Z Z 2ZjZa: 
1=1 k =1 

sin2 [ Mrc - x/~j)] ..-a- (X 

7C 2M sinZ [ a (X-XeJ) ] 

(22) 

The trignometric term on the right side is called the 
Fejer kernel of order M and is denoted by FM(x- x~j). 
Under the usual index correspondence, the partial Pat- 
terson function can be written as a sum of modified 
Fejer kernels: that is, 

K Nq 

CM(X)= ~.. ~, FM~(X--~) (23) 
q = l  p = l  

which is analogous to (19). Half-cell kernels can be de- 
fined just as in (20). For the practical computation of 
the Cesaro-summed Patterson function, the cumber- 

some form (21) is replaced by the more convenient ex- 
pression 

M-1 M - h  
CM(x)=C ~ -----~-- × IFnl z x cos 2rchx. (24) 

h=0  

One of the advantages of using Cesaro summation in 
the present work is that the 'background ripples' char- 
acteristic of directly summed sharpened Patterson func- 
tions can be avoided. The direct partial sum of a Fou- 
rier series corresponding to a given function oscillates 
about the function, and these Gibbs oscillations* can 
be very important in neighbourhoods where the func- 
tion changes rapidly. The Gibbs oscillations arise es- 
sentially because of the properties of the Dirichlet ker- 
nel. On the other hand, the Fejer kernel has much better 
characteristics, and the Gibbs oscillations do not occur 
in Cesaro-summed series. Furthermore, series which 
diverge everywhere under direct summation may con- 
verge under Cesaro summation. This is the case with 
the point-atom Patterson function, which diverges for 
every value of x under direct summation, but which 
converges everywhere under Cesaro summation. 

Lanczos sigma-summation (Lanczos, 1966) can also 
be employed in the evaluation of the sharpened Patter- 
son function, which is then given as a sum of modified 
Lanczos kernels. To obtain the Lanczos sum of a 
sharpened partial Patterson function LM(X), we simply 
compute 

M 

LM(x)=C ~. M/h~zsin (hrc/M)lFh[ 2 cos 2r&x. (25) 
h = 0  

The sigma factors, M/hrc sin (hrc/M), are specifically de- 
signed to smooth out the Gibbs oscillations. In dealing 
with point-atom interatomic functions, Lanczos sum- 
mation has the advantage that it yields a sharper inter- 
atomic function than does Cesaro summation. The 
Gibbs oscillations, while not completely eliminated, as 
in the Cesaro procedure, are very greatly reduced. The 
only disadvantage of Lanczos summation is that the 
computation of the Lanczos kernel, since it involves 
the sine integral, is more difficult than the evaluation 
of the Fejer kernel. 

For an excellent discussion of the application of 
summation methods to the practical evaluation of Fou- 
rier series, the reader is referred to Lanczos (1966). 

To summarize the previous results, the Patterson 
function for a stationary-atom crystal may be computed 
by direct summation from (2) while (5) yields the inter- 
atomic functions. Sharpened Patterson functions corre- 
sponding to crystals for which the approximation (9) 
is inaccurate should be computed from (10), while the 
interatomic functions should be obtained from (11). 
However, the direct summation implied in the expres- 

* The term 'Gibbs oscillations' has traditionally been used 
to describe the behaviour of Fourier series in the neighbour- 
hood of a jump discontinuity. However, essentially similar 
oscillations occur where a function remains continuous but 
changes very rapidly and it is in this sense that the term is used 
here, 
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sions will lead to severe Gibbs oscillations; to reduce 
these the best course would be to employ Lanczos sum- 
mation to evaluate the series. When dealing with crys- 
tals for which the sharpening approximation (9) is suf- 
ficiently accurate, the most convenient approach is to 
Cesaro sum the sharpened Patterson, and to express 
the interatomic functions in terms of the Fejer kernel. 
In the following work, expressions like (6) and (8) will 
be used in a general sense, with the understanding that 
the PM(X) and Imq(X-xg) may represent direct, Cesaro, 
or Lanczos sums, depending on the particular crystal 
being studied. 

A generalized polynomial for the extraction of the 
vector set from the Patterson function 

Equations (6) and (8) show that the Patterson function 
is a non-linear function of the interatomic function par- 
ameters. On account of the great difficulties usually as- 
sociated with non-linear mathematical methods, the 
formulation of a general method for the determination 
of the interatomic function parameters directly from 
these expressions would appear to be a hopelessly diffi- 
cult task. In order to circumvent this difficulty, we seek 
expressions which approximate the non-linear forms 
(6), (8), (16) and (20), and in which the interatomic 
function parameters occur, indirectly or directly, in a 
linear way. Expressions of this kind can be formulated 
via constructive function theory. Given the one-dimen- 
sional partial Patterson function PM(X), w e  seek a gert- 
eralized polynomial (Cheney, 1966) 

S 

a ( x )  = 
i=1 

where the J~(x) are a given set of S independent func- 
tions and the coefficients ei are chosen so that, accord- 
ing to some selected norm, G(x) is a 'good' or perhaps 
best approximation to PM(X). 

In constructing the approximating polynomial, it is 
first of all necessary to make a choice of the functions 
3~(x) to be used, and to choose the norm or metric to be 
employed in the evaluation of the accuracy of the ap- 
proximation. Rice (1964) has pointed out that neither 
of these questions allows a rigorous analysis, and the 
choice must be guided by computational experience 
and a consideration of any special requirements in- 
volved in a specific application. In practice, for the 
problem of computing approximations on some chosen 
interval, it is usually desirable to replace that interval 
by a finite set of points. One then seeks an approx- 
imation which is, in some desired sense, optimum on 
that set; in this way the problem is discretized. 

In the present application, interatomic functions are 
used as approximating functions. D divisional points 
are allowed for each kind of interatomic function. For 
a Patterson function with K kinds of interatomic func- 
tions, there is a total of KD divisional points in [0,½]. 
Consequently there are (KD-1) equal intervals in [0,½], 
each interval being of fractional length 1/(2KD-2). 

Under this divisional scheme x~ is the p t h  divisional 
point for interatomic functions of the qth kind. Then 
the fractional coordinate associated with a given x~ is 

( r - 1 ) + K ( j - 1 )  
x~ = 2 ( K D -  1) " (26) 

Thus the sequence of divisional points is xl, xl 2, x~ . .. 
x'~, x21, x 2, x32 . . .  xr2, x~ . . . XD r with x]=O and XDK--I__ 2" 
This divisional scheme may at first seem needlessly 
complicated, but it will be seen in later papers that it is 
required for reasons of accuracy. 

We then consider the generalized polynomial in the 
half-cell interatomic functions 

K D 

G(x)= ~ ~NgIHMq(X--Xg). (27) 
q=l p = l  

Alternatively, [0,1] could be divided into an appro- 
priate set of KD divisional points, and the generalized 
polynomial in the full-cell interatomic functions 

K D 

G(x)= ~ ~N~,IMq(X--X~, ) 
q = l  p = l  

could be considered. However, it will be shown in the 
following papers that (27) is computationally prefer- 
able to (28). 

The coefficients N~ in (27) are now to be evaluated 
in some way so that G(x) will in some useful sense be a 
'good' approximation to PM(X). Ideally, the Ng would 
be defined as the number of interatomic functions of 

1 q q < <½(xg+x~+l); these the q th kind in ~ ( x p _ l + x p ) - x  
will be called the node-integral Ng and denoted .Ng. If 
they could be determined in some way, the )Vg would 
give all the interatomic function parameters except for 
a translational error of maximum value l/(4D-4). Then 
by choosing D sufficiently large, the translational error 
could be made negligible. However, in practice the Ng 
must be determined from Pu(x),  and thus only an ap- 
proximation to the _Ng can be obtained. 

The simplest way of determining the Ng is to set 

G(x~)=PM(X~) r=l ,2 ,  . . .  K; j = I , 2 , . . . D  (29) 

or, more explicitly 

K D 

~ [l~tq(X~- xg)]Ng = PM(X~) 
q=lp=l 

r= l,2, . . . K; j =  l,2, . . .  D . (30) 

In (30), H r IM~(X j --X~) gives the value of the p th inter- 
atomic function of the qth kind at the r th  divisional 
point of the j t h  kind. Thus (30) represents a system of 
KD equations in the KD unknowns, which can be solved 
for the No q. Under (29), G(x) interpolates to PM(X) at 
KD points. 

As a second method, we again divide [0,½] into KD 
divisional points for the location of interatomic func- 
tions, but now consider another s e t  (-,Y1,X2, . . .  X Q )  of 
Q points, where Q ~ KD, for the evaluation of the ac- 
curacy of the approximation, We then choose the N~, 



216 THE P E R I O D I C  V E C T O R  SET F R O M  THE P A T T E R S O N  F U N C T I O N  

so that the maximum error of the approximation on 
the set of points 262z, . . .  2o 

Ema, x = max{] P2v/(~i) - G2i)I }. (31) 
I<_t<Q 

is a minimum. Then G(x) is said to be at best Tcheby- 
cheff or minimax approximation to Plu(x) on the set 
{21,:~2, . . .  2o}. The Ng can most conveniently be de- 
termined using the flexible and powerful methods of 
linear programming (Rice, 1964). 

The above approach has reduced the problem of ex- 
tracting the periodic vector set from the Patterson func- 
tion to a problem in linear approximation. There are 
many mathematical questions of a theoretical nature 
involved in the determination of the interpolatory and 
Tchebycheff approximations, and these cannot be 
treated adequately in this paper; the interested reader 
is referred to the excellent book of Rice (1964) for a 
thorough treatment. In any case, the application of 
(30) and (31) is not limited by theoretical considera- 
tions; the limitations are imposed by problems of num- 
erical computation. Numerical difficulties may arise 
when the approximation problem is formulated in such 
a way that an extremely large system of equations re- 
suits. For example, a three-dimensional interpolatory 
solution of the Patterson function, in which 30 divi- 
sional points were used along the a, b, and c axes, 
would require the solution of 27,000 equations in 
27,000 unknowns! While such systems can be solved in 
practice (provided the system is mathematically 
stable), there would appear to be little reason for doing 
so; in the present method two- and three-dimensional 

solutions appear to offer no significant advantages over 
the one-dimensional formulations dealt with in this 
paper. The details involved in the practical computa- 
tion of the interpolatory approximations have been 
briefly described in a previous paper (Goldak, 1969). 
The more powerful Tchebycheff methods will be dealt 
with in a following paper. 

This work was supported by a National Research 
Council grant. The author is also grateful to Dean A. D. 
Booth for discussion and for his general support of the 
author's crystallographic work. 
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The Determination of Cyelieity, Hexagonality, and other Properties of Polytypes 
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The cyclicity of a polytype, the percentage of hexagonality, and the distribution of figures '1' among 
even and odd places of the Zhdanov symbol may be deduced directly from measured intensities. These 
values are given for a 66R polytype whose sequence has been determined earlier and for a hypothetical 
l14R polytype. A discussion is given of the errors in these values originating from the errors of the 
[SI z values used and of the errors produced, if instead of the exact formula for the cyclicity an approxi- 
mation advocated by Mardix and his coworkers is used. 

Introduction 

A method for the direct determination of periodic 
polytypes of ZnS, SiC or similar substances from meas- 
ured intensities of X-ray diagrams has been published 

by two of us (Farkas-Jahnke; 1966, Dornberger-Schiff 
& Farkas-Jahnke 1970) and successfully applied (Go- 
rues de Mesquita, 1968; Farkas-Jahnke & Dornberger- 
Schiff, 1970). The method is applicable if rather ac- 
curate values IS(kl)lZ=lF(hkl)lZ/lFo(hkl)] 2 are ob- 


